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SUMMARY 

*l?/ q 
J-  

In an effort to provide design data for the construction of ".Ja 
. ,  

an electromechanical system with the two degrees of freedom 

required for solar  paddle orientation, the following expressions 

were determined: (1) the total conservative torque acting at 

the paddle-arm-rotation axis as a function of geometry and 

paddle - a rm angle and (2) the moment of inertia about the paddle - 

arm-rotation axis for a rectangular solar paddle as a function 

of geometry and pitch angle. The appendices include examples 

of determining the paddle -a rm angles a t  which equilibrium and 

maximum conservative torques occur data tables ,  and curves 

of the derived expressions for a specific geometry. /a d r f / & (  
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DERIVATION AND GENERAL CALCULATION O F  CONSERVATIVE 

TORQUES EXERTED AT THE PADDLE-ARM AXIS O F  A LAB- 

ORATORY MODEL SATELLITE AND THE DETERMINATION O F  

THE MOMENT O F  INERTIA ABOUT THE PADDLE-ARM AXIS O F  

A RECTANGULAR SOLAR PADDLE WITH VARIABLE PITCH 

by 

S .  G. McCarron sv /+3 
Goddard Space Flight Center Greenbelt, Maryland 

INT RODUG T ION 

To date,  spin-stabilized satellites powered by solar  paddles gener- 

ally have stationary paddles. As a spin-stabilized satellite t ravels  

around the sun, the angle between the spin axis and sun line continually 

changes (except for the special case where the sun line is always normal 

to the spin axis) because the spin axis is fixed in space. In addition, 

torques resulting from atmospheric drag ,  magnetic-field gradient, solar  

p re s su re ,  etc., cause the sun-line spin-axis angle to undergo changes 

after launching. 

specific par t  of the sun-line spin-axis range of angle. That is ,  the body 

of the satellite shades the solar  paddles o r  the solar  paddles shadow one 

another. In order  to improve a particular solar-paddle aspect ra t io  when 

shadowing occurs ,  a system was devised in which two non-adjacent 

solar  paddles (out of a total of four) a r e  allowed two degrees of freedom. 

Two ideal degrees of freedom would be: (1) movement about the paddle- 

arm-rotation axis ,  and (2) movement about the longitudinal axis of the 

For a particular satell i te,  shadowing occurs in a 
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paddle. The orientation system of the model satellite being built within 

the Space Power Technology Branch is to eventually incorporate those 

degrees  of freedom, and to have the adjustable paddle a r m s  move in a 

180-degree out-of-phase fashion when shadowing occurs .  A further 

development of such a system could be variable solar-paddle aspect 

ratio at any sun-line spin-axis angle ;  this could maintain the charging 

rate  as solar cell degradation occurs ,  o r  decrease the charging rate  as 

the battery system becomes charged. The present system under con- 

struction is an  intermittent duty one, whereas future systems wi l l  be 

continuous duty. 

CONSERVATIVE TORQUES 

The total conservative torque acting at the fulcrum of a solar-paddle 

arm (on a model satellite} is composed of centrifugal and gravitational 

components. The centrifugal torque resul ts  from the spin of the satel-  

lite and the fact that the center of mass of the paddle does not lie at the 

paddle -arm-rotation axis. The gravitational torque a r i s e s  from the 

fact that gravity acts  near the geometrical  center of the paddle, which 

l ies off the paddle -arm-rotation axis.  The nonconservative torques 

which a r i se  from frictional forces are neglected in the calculations. 

Figure 1 shows an IMP-type satellite with two of the four rectangu- 

lar solar  paddles movable. The geometry of the satellite is labeled as 

follows: 

paddle a r m ,  (3) a is the width of a paddle, (4) b is the length of a paddle, 

(5) c is the thickness of a paddle, (6) 8 is the subtended paddle-arm 

(1) R is the radius of the satell i te,  (2) A is the length of a 

f. 
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Figure 1. An IMP-type satellite, whose configuration was used in designing the laboratory 
satellite, i s  shown with the variable rectangular solar paddles. 

I 
I 

angle, (7) p is the paddle-pitch angle, and (8) wZ i s  the angular velocity* 

about the spin axis of the figure. Figure 2 shows a schematic diagram 

of the conservative torques acting at  the paddle-arm-rotation axis.  

The total conservative torque acting at the fulcrum of the paddle a r m  
I 

~ 

I 

at an angle B to the vertical  is  given by 
I 

*The model is  being d r i v e n  by a c o n s t a n t  speed motor, t h u s  

making wz cons tan t .  
3 
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Figure 2. A schematic diagram of the conservative torques acting at the paddle-arm- 
rotation axis of the laboratory model. 
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whereF, is the centrifugal force given by 

and W is the weight given by 

W = m g  (3) 

where m is the mass  of the paddle and g is the acceleration due to gravity. 

Substituting equations (2) and (3) into equation (1) gives 

The equilibrium condition is given by 

i t 1  

Reducing equation (5) to t e rms  containing powers of sin 6 gives 
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(A t :) sin48 t 2 R  (A t +) a: sin3 8 

Appendix I gives a solution of equation (6) for the case of the model 

satellite under development. Horner 's  method is used to approximate 

the desired root of equation (6) with the determined coefficients. 

The derivative of equation (4) gives 

2 

d8  [EM3 = W (A ty 2 g  {s [ -R s i n  8 + (A t $)cos 281 -  COS^} (7) 
io1 

Maxima and minima a r e  obtained from the equation 

Reducing equation (8) to t e rms  containing powers of sin 8 gives 
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Appendix I1 gives a solution of equation (9) for the case of the model 

satellite under development. Again Horner 's  method is used to approxi- 

mate the desired root. 

The general  torque equation is normalized by rearranging the terms 

of equation (4) 

cos 6 sin 28 ZMi 

= ~ a : [ y ]  + ( A +  2) [ 2g 3 t [ - s i n + ]  

Let 

cos e f, = R U E  

sin 20 
f 2 =  k+$)O:[  2g ] 

f ,  = [- s i n  01 
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Normalizing equations (1 1) with respect  to the geometrical  parameters  

and spin rate gives 

f ,  = [-sin e] 

Each right hand side of equations (12) is plotted in Figure 3.  

of f ,  and the normalized values of f ,  and f ,  a r e  determined from the 

curves for each particular 8 .  Denormalizing each amplitude factor and 

algebraically adding them gives the total normalized torque. Denor - 

malizing again gives the total torque for a particular value of 0. A 

specific example for the model satellite is given in Appendix 111. 

Figure 6 in Appendix I11 shows a plot of the total torque as a function 

of 8 ,  for the model satellite. 

The value 

MOMENT O F  INERTIA 

Figure 4 shows an isolated solar  paddle drawn with respect  to the 

paddle -arm uv-rotation plane. 

re fe rs  to the translated-rotated u*v*w* coordinate system. Coordinates 

in the u' v'w' system are related to the coordinates in the U" V*W" system 

by the following transformations: 

The geometry of the paddle, as labeled, 
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Figure 3. A graph of  the normalized components o f  the general 
torque equation versus paddle-arm angle. 
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Figure 4. An isolated solar paddle drawn with respect to the 

paddle-arm uv -rotation plane. 

1 u' = w* sin p t u* cos p 

v f  = vy 

J w f  = wy cos p - U" sin p 
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where p is the pitch angle of the paddle. The moment of inertia about 

the w' -axis of the ut v t  w' coordinate system is by definition 

I I , = I: (u i2  t vi*) dm 
1 1  

Using the transformation equations (13) I the above equation becomes 

I = 1 (sin2p w12 + ms2p u'l + sin 2p u"w" +  dm (15)  w w  

or 

Integrating over w" gives 

Integrating over u" gives 

b 
T 

I i t = PJ' (e sin2p +- a3c 

12 12 w w  

- 2  
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Integrating ove r vx gives 

b2 c2 cos2p + - t - sin2p 
12 12 

I ,  , = m  ($ 
w w  

where 
a -  

m = p abc  (21) 

Coordinates in the uvw system are related to the coordinates in  the 

u' v' w' system by the following transformations: 

w = w' J 
where h is the length of the paddle arm. The moment of inertia about 

the w-axis of the uvw coordinate system is by definition 

I,, = I (u2 t v2)  d m  

substituting equations (22) in equation (23) gives 
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Integrating the above expression, the third t e rm reduces to zero because 

of symmetry and the resul t  is  

o r  

I = I,, = m [g coszp + - b2 12 + -  cz 12 sin2 p + (A +-$7] (26) 

The moment of inertia equation is normalized by writing it in the follow- 

ing form: 

Let 

f ,  = (az; c ’ )  [coszp] 

bZ c2 
12 12 

f , =  - + -  

_. 

Normalizing equations (28) with respect to the geometrical  parameters  

gives 

f 4  = [cosz p] 
(a2 - cz) 

12 
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= 111 f, 
2 -t b2 -t c2 (At$-) 

12 12 

Each right side of equations (29) is plotted in Figure 5. The normalized 

values o f f ,  and f ,  a r e  determined from the curves for each particular 

p.  Denormalizing each amplitude factor and algebraically adding them 

gives the total normalized moment of inertia for a particular paddle- 

pitch angle, Denormalizing again gives the moment of inertia. A 

specific example for one of the model 's  paddles is given in Appendix N. 

Figure 7 in  Appendix IV shows a plot of the data obtained from Figure 5 

for the particular paddle. 
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Figure 5. A graph of the normalized components of the paddle 
moment of inertia versus the paddle-pitch angle. 
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a =  5.00 in, 

b = 6.50 in, 

APPENDIX I 

A = 2.25 in. 

R = 3.75 in. 

w = 217 rad-sec-1 

g = 384 in. -set-2 

2 
(A+;) w: s in40  t 2 R  (At:) w: s in30  

- 2 R  (A+$) w: sin0 - R 2  IX: = 0 .  

Evaluating the coefficients in  the above equation gives 

2 
(A++) w: = 0.472 x 10” in.2-sec-4 

2 R  ht- w: = 0.643 x lo-’ in.2-sec-4 i 3 
w: t g2  = 1.22 x 10’5 in.2-sec-4 R 2 w: - ( A + $ r  

2R  At- uz = 0.643 x 10’’ in. 2-sec-4 ( 3 
R2w: = 0.219 x in. 2-sec-4 * 

Substitution of calculated coefficients in  quartic gives 

sin48 + 1.36 sin30 t 2.58  sin28 - 1.36 s i n 8  - 0.464 = 0 
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Hor ne r ' s Method give s 

1 3.44 6. 39 3.25 

0. 08 0. 28 0.53 

4 -  .. 

-0.004 

-0.464 I 0 . 5  1 1. 36 2. 58 -1.36 

0 . 5  0. 93 1. 76 0.200 

1 3.52 6. 67 

0.08 0. 29 

* .  

3. 78 

2.74 
I 

6. 12 

1 3. 36 6. 12 2.74 -0.264 L 0.08 

0. 08 0. 27 0.51 0.260 

6. 96 

1 3.68 6. 96 3. 78 -0.004 I 0.001 
0.001 0.004 0.007 0.0038 

1 3.681 6. 964 3.787 -0.0002 

:. sin9 = 0 .5  + 0.08 t 0.001 t * * = 0.581' 
9 = 
9 = 35.53" 

arc s in  (0 .  581) 

This is the angle at which equilibrium occurs. 
. I  
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a = 5.00 in.  

b = 6.50 in. 

APPENDIX I1 

A =  2.25 in. 

R = 3.75 in. 

wz = 2 7 ~  r a d - s e c - ’  

g = 384 in.-sec’2 

Evaluating the coefficients i n  the above equation g ives  

2 

4a2 (Xi-:) = 1.89 x in.2-sec’4 

2 

uz R 2  - 4 w t  (A++) t g = -0.193 x in. ‘ - 2 3 . 2 ~ ’ ~  

2 
(At;) - g 2  = -1.00 x IO-’ in.2-sec-4 * 

Substitution of calculated coefficients in  quartic g ives  

s i n 4  8 t 0.682 s i n 3  8 - 0.102 s i n 2  8 - 0.340 s in8  - 0.529 = 0 

18 



Horner ' s  Method gives 

1 1.482 1.084 0.527 

r. .. 

-0. 107 .. . .. 

1 2.282 2.910 

0. 8 2.466 

2.855 

0. 8 1.826 2.328 I 

1 3.082 

0. 8 

5.376 

3. 912 5.493 3.020 -0.0 16 

0. 118 0. 168 

3.942 5.611 3. 188 

0. 119 

3.972 5.730 

0.03 1 
-0.016 I 0.005 1 4.002 5. 730 3. 188 

0.005 0 .020  0.029 0. 0161 

1 4.007 5.750 3.217 to. 0001 

= 0. 835- . . .  :. sine = 0.8 + 0.03 + 0.005 - 
0 = a r c  s in  ( 0 .  835) 
e = 123.380 

This is the angle at which maximum torque occurs.  
.. 
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APPENDIX 111 

0" 

15" 

30 " 
45 " 

60 " 

a =  5.00 in. 

b =  6.50 in. 

A = 2.25 in. 

R =  3.75 in. 

2.60 0.385 0.00 0.000 

2.51 0.371 0.65 0.141 

2.25 0.333 1.13 0.245 

1.84 0.272 1.30 0.282 

1.30 0.192 1.13 0,245 

w Z  = 217 rad-sec - '  
- R W 2 ,  = 0.148 in . - sec -  2 

lo00 W =  100 gm-wt = 3.53 oz 

75" 

90" 

b 
2 

At-= 5.50  in. 

0.67 0.099 0.65 0.141 

0.00 0.000 0.00 0.000 

W A+- = 19.4 oz- in .  ( 9 

120" 

135" 

= 0.217 in.-sec'2 
1000 

-1.30 -0.192 -1.13 -0.245 

-1.84 -0.272 -1.30 -0.282 

-0.866 

-0.707 

-0.500 

-0.259 

~~ ~ 

-1.30 -25.3 

-1.26 -24.5 

-1.08 -20.9 

-0.771 -15.0 

105" I -0.67 1-0.099 I -0.65 1-0.141 

150" 

165" 

-2.25 -0.333 -1.13 -0,245 

-2.51 -0.371 -0.65 -0.141 

0,000 180" I -2.60 1-0.385 I 0.00 I 0.000 -0.385 - 7.47 

t . 1  fltf2+f3 I - * ( ; )  W A+- (fltfi+f3 ) 1 
I 0,000 I 0.3851 7.47 

-0.259 I 0.2531 4.91 I 
-0.500 I 0.0781 1.51 I 

I -0.707 I -0.153 I - 2.97 

-0.966 I -1.21 I -23.4 I 

, 

. .  
. I  
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Figure 6. A plot of conservative torque versus 
paddle-arm angle for the model satellite. 
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APPENDIX N 

0" 

15" 

30" 

45 " 

60 " 

75" 

a2-c2 -= 2.07 in.2 
12 

- t - t (A+$) = 33.8 in.l 
12 12 

a = 5.00 in. m = 6.89 x slugs 

b = 6.50 in.  

c = 0.375 in. 
b b2 c2 2 

2 
A + -  = 5.50 in. 

1 .ooo 2.07 35.9 

0.933 1.93 35.7 

0.750 1.55 35.4 

0.500 1.04 34.8 

0.250 0.518 34.3 

0.067 0.139 33.9 

90" 

105" 

0.000 0.000 33.8 

0.067 0.139 33.9 
~ 

1 20" 0.250 

135" 0.500 

0.750 

165" 0.933 

180" 1 .ooo 2.07 

0.518 34.3 

1.04 34.8 
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Figure 7. A plot of the moment of inertia versus 
pitch angle for the model paddle. 
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